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SUMMARY

Approximate analytical relations are developed

for several possible "conical" flow fields resulting from

the steady supersonic flow of a uniform, non-viscous, non-

heat conducting, combustible-gas mixture past a semi-

infinite cone (at zero angle of attack) for instantaneous

chemical reaction. The flow fields considered are of the

shock-deflagration, detonation, and detonation-shock types

with attached adiabatic and diabatic discontinuities.

Particular emphasis is placed upon the Chapman-Jouguet

detonation.

Parametric curves are presented for shock-

deflagration flows about cones and wedges, and Chapman-

Jouguet detonative flows about cones.

Generalized analyses of the flow characteristics

of an oblique exothermic discontinuity are given in the

appendices.



APPUIS PNVSIU LAOMTGG
&IkW lb%~e Muvlmd

SYMBOLS-

a local speed of sound

a normalized local speed of sound, a/c

c maximum speed obtainable by adiabatically

expanding into a vacuum (constant for any

given region 0,1,2, etc.) c - J2rRr/(r-l)

C3YC4,-- constants defined following Eq. (7)

C YCQ functions defined respectively by Eqs. (B4)

and (B6)

"c specific heat at constant pressure
c
"v specific heat at constant volume

k cot qP

kf cot Pa

M local Mach number, V/a

m component of local Mach number normal to a

conical ray, v/a (see Fig. 2)

p static pressure

P total pressure

Q mechanical equivalent of heat added per unit

mass of fluid (ft-lb/slug, or other consistent

units)

Q/c pT heat-addition parameter (Damkohler's second

parameter)

2
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SYMBOLS (cont'd)

R gas constant

T static temperature

u,v velocity components parallel and perpendicular

respectively to a conical ray (see Fig. 2)

u *v normalized velocity components, u/c, v/c

V local resultant velocity, u2 + v2

V0  free-stream velocity

r (r - 1)/2

r ratio of specific heats, cp/Cv

e local flow inclination relative to free-

stream direction (see Fig. 2)

P mass density

T total temperature

P spherical or polar angle (see Fig. 2)

B mathe maximum body semi-apex angle for which
max

a conical flow region can exist for a given

free-stream Mach number and heat release

9B body semi-apex angle corresponding to a

surface Mach number of unity

S1 ,12,etc. functions of r defined in Appendix C

3
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Subscripts

O,1,2,etc. denotes a constant-value quantity in the

particular region (see Fig. 1) indicated

by the subscript

B denotes conditions at the body surface

D denotes conditions at a detonation wave

d denotes conditions at any general exothermic

discontinuity

F denotes conditions at a deflagration wave

J denotes conditions at, or pertaining to, a

Chapman-Jouguet detonation

s denotes conditions at a singular discontinuity

S denotes conditions at an adiabatic shock wave

T denotes juncture point of inner and outer

solutions for the unit field

(±) see statement following Eq. (Blb)

[±] see statement following Eq. (B6)

Superscripts

indicates a variable quantity in region 0

(see Fig. 1)

indicates a variable quantity in region 1

(see Fig. 1)

4
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Superscripts (cont'd)

indicates a variable quantity in region 2

(see Fig. 1)

(J) denotes conditions corresponding to a

Chapman-Jouguet detonation

(0) see statement preceeding Eq. (B9)

5
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INTRODUCTION

Although supersonic combustion in the form of

a non-stationary Chapman-Jouguet detonation propagating

through a tube filled with a combustible gas has been

studied by combustion scientists for about eighty years

(Refs. 1 and 2), it is only in recent times that experi-

mental investigations have been conducted on supersonic

combustion processes which are stationary with respect

to an aerodynamic body, a fuel injection nozzle, or an

exhaust nozzle (see, for example, Refs. 3 through 8).

The motivation for the increased research activity in

supersonic combustion stems from recent analyses of hyper-

sonic ramjets utilizing supersonic combustions (Refs. 9,

10, and 11), proposals for detonative propulsion engines

(Refs. 12 and 13), and studies of unconventional supersonic

aircraft utilizing external burning for lift and for

propulsion (Refs. 14 and 15). Hence, there are now

practical as well as fundamental reasons for obtaining a

more complete understanding of supersonic combustion

processes.

It is observed, with regard to the detonative

supersonic combustion experiments of Refs. 4, 5, and 6 that

blunt bodies are more conducive to initiating shock-induced

combustion than pointed ones because of the relatively higher

6
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static temperature behind the normal shock. On the other

hand, it seems only logical that greater dividends are

derived from experimental investigations performed on con-

figurations amenable to analytical calculation. A wedge

is much more satisfactory in this respect than a blunt body.

A cone, however, is not only amenable to analytical calcula-

tion (at least for the idealized case of instantaneous

chemical reaction) but also represents a configuration which

is adaptable either to the technique of firing in a gas-

filled ballistic range or to stationary testing in a com-

bustion wind tunnel. This overlapping of available testing

techniques can hardly fail to be rewarding. Also, a cone

is free of the end effects encountered on a finite-span

wedge. A wedge has the advantage, however, of producing a

stronger shock than a cone for a given apex angle and free-

stream Mach number. Experimentally this can be compensated

for in cone tests by increasing the temperature of the

ambient gas in the tunnel or range.

This paper presents approximate analytical rela-

tions for several possible "conical" flow fields resulting

from the steady supersonic flow of a uniform, non-viscous,

non-heat conducting, combustible-gas mixture past a semi-

infinite cone (at zero angle of attack) for instantaneous

chemical reaction. Aside from its fundamental aspects, the

7
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primary purpose of the paper is to present material which

it is hoped will be useful in the design and interpreta-

tion of cone-flow supersonic combustion experiments aimed

at obtaining a better understanding of the basic phenomena

involved in supersonic combustion.

It appears that the only other theoretical work

dealing with non-linear diabatic cone-flow fields is that

of Kvashnina and Chernyi (Ref. 16). Kvashnina and Chernyi,

without recourse to numerical calculation, deduce from an

examination of the hodograph differential equation, the

detonation hodograph, and the cone boundary condition, the

general character of the flow field for the flow of a super-

sonic gas stream past a solid cone with an attached detona-

tion wave and varying amounts of heat release.

Although supersonic combustion flow about a cone

is the main topic of this paper, some numerical results for

wedge combustion flow fields are included as a matter of

interest.

GENERAL DESCRIPTION OF SOME POSSIBLE

CONICAL FLOW REGIMES FOR INSTANTANEOUS

CHEMICAL REACTION

The assumption of instantaneous chemical reaction

allows a combustion zone (detonation or deflagration) to be

treated as an exothermic surface of infinitesmal thickness

8
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across which the flow properties and chemical compositious

are discontinuous. An illustration showing some possible

theoretical supersonic conical flow fields with an exothermic

discontinuity appears in Fig. 1. The detailed notation,

applied to a particular case of Fig. 1, is illustrated in

Fig. 2. The adiabatic shocks appearing in Fig. 1 are

assumed not to produce a change in the specific heats or

in chemical composition. The different chemical compositions

in the regions upstream and downstream of an exothermic dis-

continuity are frozen throughout their respective fields and

the gas is assumed to be calorically and thermally perfect

throughout a given region although it experiences an instan-

taneous change in the specific heats in crossing an exothermic

discontinuity. The bounded flow fields between discontinuities

(shocks, deflagrations, detonations, and bodies) are conical

in the sense that the flow properties are constant along

straight line elements emanating from the apex of the body.

This is representative of the flow field for a chemically

reacting mixture with finite reaction time in the region far

away from the apex. In the vicinity of the apex, for

distances of the order of the chemical relaxation distance,

the flow will not be conical. The reduction of the flow

problem to one involving conical fields represents a con-

siderable simplification in the analytical task.

9
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For an ambient stream of a given chemical com-

position the consequences of the chemical reactions are

implicitly included in the aerothermodynamic parameters

of the oblique exothermic discontinuity relations given

in Appendix A. Since it is beyond the scope of this

paper to treat the thermochemical aspects of the flow in

detail, those quantities which would be determinate if the

governing thermochemical relations were included are

assumed to be known "a priori". These include, the heat

release, the specific heats downstream, and the normal-

component Mach number upstream of the exothermic dis-

continuity.

The oblique exothermic discontinuities shown in

Fig. 1 are classified by applying Jouguet's rule (Ref. 17)

for one-dimensional reactive flow to the normal components

of the upstream and downstream Mach numbers at the dis-

continuity. Hence, immediately ahead of ah oblique exothermic

discontinuity the normal Mach-number component relative to

the discontinuity is subsonic for a deflagration and super-

sonic for a detonation. The downstream normal Mach-number

component is subsonic for a weak deflagration or a strong

detonation, and supersonic for a strong deflagration or a

weak detonation. Oblique Chapman-Jouguet deflagrations and

detonations are those for which the downstream normal Mach-

number component is unity.

10
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The use of the adjectives "strong" and "weak" in

the foregoing classification leads to an ambiguity in termi-

nology if the traditional method of describing an oblique

adiabatic shock due to a cone or wedge as strong or weak in

acqpvance with the magnitude of its inclination angle is

carried over to the diabatic shock case, since, in a manner

analogous to adiabatic flow, two detonation-wave angles are

obtained for a cone or wedge at a given free-stream Mach

number, and a given detonative-wave heat release. The
1

ambiguity is avoided by designating the detonation wave

with the larger inclination as "strongly inclined" and the

one with the lesser inclination as "weakly-inclined". Hence,

an oblique strong detonation may be a weakly-inclined strongI
detonation or a strongly-inc Vned strong detonation. Similar

descriptions are applied to weak detonations and to C-J

detonations.

It can be shown from entropy considerations

(Ref. 17) that strong deflagrations are impossible. For one-

dimensional detonations, the literature is controversial

(Refs. 1 and 2) regarding the theoretical existence of non

C-J detonations, although the preponderant opinion seems

1 This situation does not occur for oblique adiabatic shocks

with constant specific heats, since consideration is never
given to classifying such shocks in terms of their normal-
flow properties because the normal-flow weak solution yields
the result that "nothing happens" see Eq. (A6).

11
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to be that Chapman-Jouguet detonations are the most probable,

and that strong detonations are more probable than weak ones.

For plane (wedge) flow, Siestrunch and associates (Ref. 18)

have theoretically demonstrated the impossibility of weak

detonations from an examination of the detonation polar

without recourse to entropy considerations. For cylindrical

(cone) flow Kvashnina and Chernyi (Ref. 16) imply the non-

existence of weak detonations. In any case, the present

analysis is generally confined to weak deflagrations, strong

detonations, and Chapman-Jouguet detonations all having weak

inclination angles. The restriction to weak inclinations

follows by analogy to oblique adiabatic shocks for which only

weak inclinations are observed in physical reality.

For plane flow, the shock-deflagration and the

detonation flow regimes shown in Fig. 1 have been analyzed

previously in Refs. 19 and 20, and Refs. 16, 21, and 22

respectively. A relatively superficial examination of the

problem is sufficient to convince one's self that there

also exist cylindrical flows having the same general

character, although the field details differ in that for

cylindrical flows, the pressure increases in the downstream

direction along curved streamlines in bounded conical-flow

regions, whereas for plane flows the pressure is constant

on straight streamlines in bounded conical-flow regions.

12
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For the detonative type flows it is pertinent to

note that there are two particular values of the body semi-

apex angle pB (for both cones and wedges) which are crucial

to the delineation of the detonative-flow regimes shown in

Fig. 1. For given values of the free-stream Mach number,

specific heats, and heat release at the detonation wave,

there exists a maximum body semi-apex angle p. above
max

which a conical flow (plane or cylindrical) cannot exist,

i.e., the wave becomes detached, and there exists also a

semi-apex angle pB' B max- B •B, at which the detonation

wave becomes a Chapman-Jouguet detonation. For body semi-

apex angles less than qBmax but greater than TB the flow

equations yield two solutions, as previously noted, one of

which corresponds to a strongly-inclined detonation wave and

the other to a weakly-inclined detonation wave. For body

semi-apex angles less than p , the detonative wave angle

remains at p., and an expansion region occurs downstream of

the detonation wave. This expansion region has a different

character for plane and cylindrical flows. For plane flow,

the expansion region is simply a Prandtl-Meyer expansion of

sufficient extent to turn the flow parallel to the body

surface. For cylindrical flow, Kvashnina and Chernyi in

Ref. 16 ascertain that the conical expansion field adjacent

13
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to the detonation wave is bounded on the downstream side

by a shock wave followed by a compression flow field between

the shock and cone (Fig. ld). As the cone angle decreases,

the width of the expansion zone increases, while the in-

tensity of the shock wave at first increases and then begins

to decrease until it degenerates into a characteristic.

The flow direction on this characteristic is parallel to

the axis of symmetry. An isentropic compression then

occurs between the characteristic and the cone surface.

When the cone angle is decreased still further the amount

of compression is reduced until at zero cone angle it dis-

appears entirely and the region behind the conical expansion

region is uniform and parallel to the axis of symmetry.

For a cone, the detonative flow in Fig. lc bears

a close relationship to the adiabatic flow of Fig. la as

now will be demonstrated.

If, in an adiabatic flow with a given cone angle,

normalized cone-surface velocity uB, and specific heat ratio,

the normalized governing differential equation (see Eq. (1))

is integrated forward of the cone, ignoring the upstream

boundary condition, an upper bound to the extent of the

conical-flow field is found to occur at the singular

14
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discontinuity1 surface, qs', shown in Fig. la (Ref. 25).

This singular behavior in the differential equation occurs

at v - a, which is identical to the Chapman-Jouguet condition

for diabatic flow. Therefore, when the detonation in Fig. lc

is a C-J detonation ( -D " PJ)' the flows in the bounded

regions (pŽs ( B qB) and (p'• Ž > P PB) of Figs. la and lc

respectively are identical for a specified cone angle,

normalized cone-surface velocity, and specific heat ratio.

It is well known (Ref. 23) that for adiabatic cone flow

there exists no uniform upstream flow that can be matched

to the conical flow region bounded by the solid cone and

the singular discontinuity surface. However, for a diabatic

flow with known values of the specific heats on both sides

of the exothermic discontinuity, it is possible, for cone

angles less than B max, to find a uniform upstream flow

having a Mach number and total temperature compatible with

the existence of a Chapman-Jouguet exothermic discontinuity

at the singular surface. Furthermore for any assumed wave

angle pD' less than p but greater than ps', it is possible

to match that portion of the foregoing conical region

IAlso called the "limit line" (Ref. 23) or "limit cone"

(Ref. 24). Ref. 25 calls this discontinuity an "outer"
discontinuity, since there exists also an "inner" dis-
continuity in the interior of the cone. This distinction
will not be made herein since the "inner'discontinuity
is not pertinent to the present problem.

15
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bounded by qD and qB to a uniform free stream having a

Mach number and total temperature compatible with an oblique

detonation of inclination TD'

In view of the significant role played by the

conical field bounded by a singular discontinuity and a

solid cone it is convenient to refer to such a field as a

unit conical field, or unit field (since v/a varies from

0 to 1.0). A unit field is uniquely defined by specifying

•B' UB, and - or ps' us$ and r.

One of the purposes of this paper is to derive

approxiniate relations for the unit conical field from which

the detonative flows of Fig. lc can be obtained. This has

been done by developing a solution valid in the region of

the singular discontinuity and one valid in the region of

the cone surface and joining the two together at an inter-

mediate location. The solution valid near the singular

discontinuity provides also the initial field just downstream

of the C-J detonation in the detonation-shock flow shown in

Fig. ld.

The approach taken in obtaining the diabatic

conical flow fields considered herein is as follows.

For the shock-deflagration case, the free-stream

Mach number and the adiabatic shock angle are specified.

The corresponding adiabatic flow downstream of the shock is

16
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obtained using one of the several approximate methods avail-

able in the literature. The inclination of the deflagration

is then taken such that the desired upstream normal Mach

number component is obtained ahead of the deflagration.

For a given heat release the flow field downstream of the

deflagration and the corresponding wedge or cone angle is

then determined by the approximate method given herein in

the next section.

For the detonation case, the free-stream Mach

number, all the specific heats, and the C-J detonation wave

angle are specified. The corresponding cone angle is then

determined by the approximate method given herein. That

portion of the unit field bounded by the C-J wave angle and

the adiabatic shock angle then may be used to determine the

upstream Mach number and total temperature corresponding to

various strong detonation wave angles for fixed values of

the cone angle, normalized cone-surface velocity, and unit-

field specific heat ratio.

To the best of the writer's knowledge the case of

a strong detonation on a wedge (Fig. lc) is the only one of

the reactive cases shown in Fig. 1 to have been observed

experimentally (Ref. 6). An isolated attempt in Ref. 4 to

produce a detonative reaction on a cone was unsuccessful.

17
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It is not known whether the deflagration case

shown in Fig. lb can be produced in the laboratory. Aside
1

from the uncertainties of ignition and burning, the fluid

dynamic aspects of the flow are somewhat restrictive with

regard to laboratory experiments. As will be seen later,

for plausible flame speeds and heat releases, the conical

flow downstream of the deflagration is partially subsonic 2

for a fairly wide range of free-stream Mach numbers and cone

angles. Such a flow, although theoretically acceptable for

a semi-infinite body, cannot be attained in thelaboratory

because of practical considerations limiting the test model

to a finite length. The existence of a subsonic region on

a finite-length conical model results in the destruction of

the conical flow as a consequence of the upstream propaga-

tion of downstream disturbances.

Assuming that a shock-deflagration flow (completely

supersonic conical field) could be experimentally established,

it presumably could be used to study (in a wind tunnel, say)

the transition from deflagration to detonation by systematic

1 An ignition system is necessary.

2 Partially subsonic conical-flow regions exist also for the
detonation and detonation-shock cases. In the detonation
case (which is the one of principal interest here), however,
the part of the flow spectrum for which this occurs is
extremely small (see Fig. 13) for weakly-inclined detonations.

18
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variations in the free-stream composition and aerothermo-

dynamic conditions.

ANALYSIS

GOVERNING DIFFERENTIAL EQUATION

The governing differential equation for non-linear

conical flow, normalized with respect to the maximum speed,

c, is (Ref. 25),

(v *2 - a*2)(d2 u*/d2 - a 2 (2 u* - v* cot T- U V *2  (1)

where

v -- du */dq) (2)

and

a,2 = r, 2 _v,*2)(3

THE UNIT CONICAL FLOW FIELD

The Outer Solution

If it is assumed that the right hand side of Eq. (1)

is not zero at T - cs', an expansion for u which will account

for the singular behavior 1 and the boundary condition at 9s is

S ,2 3 4 5 Z6u us + as + C3 Z+ C4 + C5 + C6 Z+ -(4)

Terms to be at least order of Z3 in u must be retained to
include the singular behavior.

19
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from which

* * + 3 Z+2CZ 2  5 Z3 Z4+-4 (5)
as 2 3•4 +2 5 +%D+

where
1

Z . + (P• ) 2

and, from Eq. (3),

a*2 (1) *2)(6

with

+ (Os - ()2 << 1.0 (7)

Substituting Eqs. (4) and (5) in Eq. (1), following

some long and tedious algebraic manipulations, the relations

for the coefficients in Eq. (4) are found to be

C3 * - u * a) a 1

/k*2 * *2

C4 0 2 us + 03 k s

S2,,k2 
2 )/C3

C5 -y 24 U+fl5 kusas + s 65 as 6 s

20
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C6 10 7 us + as) U +( 8 9 Us - a as )k a

+ ,2 k3 *3
+1 0  Us 1 + i a]C3

Relations for the omega parameters 1 1 2P etc., which

are functions of y, are given in Appendix C. Numerical

values are listed in Table I for y - 1.2, 1.3, 1.4, and

1.4051.

For a compression flow the minus sign is selected

in the expression for C3 whereas for an expanding flow the

plus sign is chosen.

The Inner Solution

Since v is zero at the cone surface, a reasonable

approximation in the vicinity of the cone is

(v*/a*) << 1.0 (8)

Utilization of the approximation of Eq. (8) in Eq. (1) results

in the simplification of the governing differential equation

to

d2 u* dq2 + cot P (du*/d) + 2 u* - 0 (9)

1Value used in Ref. 25.

21
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When Eq. (9) is expressed in terms of cos p as an independent

variable, it may be recognized as Legendre's differential

equation of degree one.

The general solution to Eq. (9) is

S(: 1+csq
u -A cos P + (B/2) cos T log (1 -B (10)\1- Cos T

from which

v A sin p + (B/2) sin q log + B cot T (11)\j- CosV

and the constants A and B are determined at the juncture of

the inner and outer solutions.

Equation (9) is frequently used in the literature

to obtain an approximate solution for an adiabatic flow about

a cone in supersonic or hypersonic main stream.

Joining of the Outer and Inner Solutions

In view of the restrictions of Eqs. (7) and (8)

it is appropriate to join the inner and outer solutions at

1 ,,
(v**)T -2 (12)

22



AmUss PII646 LASI SUYORI

Substituting Eq. (12) in Eq. (5), there is obtained

- -a~ + 3 C31 - (T2+ 2 C4 ( ,- pT)

3

+÷ C5 (s -CT) + 3 C6 (s - 2T + (13)

In general Eq. (13) must be solved for TT by trial and error.

If terms containing powers of (qs - PT) greater than unity

are negligible an analytic solution is obtained.

Once cT is known, the coefficients A and B are found

by equating Eqs. (4) and (10) and Eqs. (5) and (11) at T- -T

and solving the resulting equations. This procedure yields

B - sin T *( T;Q Pus,us) cos TT - u* (CT; s,us) sin 9 (14)

u* (q)T;sU) - B (1/2) cos 9T log +Cos 1T
A - Cos qT (15)

where u* (T sUs) and v * T; ',us) are obtained from

Eqs. (4) and (5).
*

From the condition vB , 0, and Eq. (11), the relation

for determining the cone angle is found to be

log soi + n•ss (16)

( B :P2) 
c PB

23
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Equation (16) must be solved by trial and error for the value

of qB corresponding to a given value of (-A/B). The plot

in Fig. 4 is convenient for ascertaining a first approxi-

mation to pB' from which a more accurate value may be

obtained, if so desired, by trial and error.

COMPARISON OF APPROXIMATE AND "EXACT"
UNIT CONICAL FLOW FIELDS

It is desirable, of course, to verify the accuracy

of the approximate unit field solution by comparing it with

an exact solution. Apparently the only exact calculations

performed for the complete unit field are those reported in

Ref. 251. Unfortunately Ref. 25 records 2 Ts without giving

the corresponding values of us or v* required for the present

3purpose3. Examination of Table VI in Ref. 25, however,

reveals that (9S - PS) is generally less than 0.2 radians

for a wide range of parameters. This suggests that u can

1 The investigators in Ref. 25 performed these calculations
principally as a matter of mathematical interest since they
considered the singular discontinuity to be without physical
significance.

2 See Table VI and Diagram No. 8 in Ref. 25.

3An inquiry to MIT regarding the possibility of obtaining the

values of us or v yielded negative results.
s
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be developed in a series expansion in powers of (p - V8)

from which us can be determined from the known value of V

given in Ref. 25. The appropriate expressions for this

purpose are derived in Appendix D. This procedure should

give a reasonably good value for u5 . However, derivatives

of u* will be less accurate near Vs as a consequence of the

singular behavior at s which is not accounted for in the

series expansion. For this reason vs is calculated from

Eq. (3)1 rather than from the derivative of the series for

u.

Exact unit-field solutions also can be obtained by

the more laborious process of extending the flow fields

of Ref. 25 forward of the shock position by means of a

numerical integration procedure. Using the Runge-Kutta

integration technique, one such calculation has been per-

formed as a check on the accuracy of the series expansion

method. In order to provide a relatively severe test, an

example was selected for which (9s - PS) is moderately large.

The parameters of the example are -B " 40 deg., uB - 0.40,

-S " 59.431 deg. and -s = 68.555 deg. (corresponding to the

flow field on p. 429 of Ref. 25). Values of 9. W 68.556 deg.

and u5 - 0.30969 were obtained from the Runge-Kutta inte-

gration. The series expansion method gave a value of

us - 0.31050 for the retention of terms in the series to

Recalling that a. vM .
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2 *order (q - , and a value of ua = 0.31017 for retention

of terms to order (9 - pS) 3. It can be seen from these

comparisons that the series expansion method predicts
*

u rather well. It can be anticipated that in general the

agreement will be better than in the example for smaller

values of (P s - CS ) and poorer for larger values.
*

"Exact" values of u5 used in subsequent comparisons

are based on the retention of terms to the order of (q, - pS)2

in the series expansion.

Approximate and exact calculations of the flow

field for the foregoing example are shown in Fig. 5. In

the approximate calculation the outer solution was calculated

3 *
retaining terms to the order of (qs -P) in u . It is

apparent that the approximate calculation agrees very well

with the exact one.

The results of additional computations comparing

exact and approximate values of the cone semi-apex angle and

the normalized cone-surface velocity for given values of qs

and u* are recorded in Table II. Also given in the table

are, the joining angle qT for the inner and outer solutions,

and the free-stream Mach number N for which the unit field

1corresponds to a Chapman-Jouguet detonation . Note that the

1 The free-stream Mach number, N0 j, is found by substituting

the C-J condition in Eq. (29) and solving the resulting
quadratic equation in 0 2.

oj
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cone-angle error (ip - •B)/Tl generally increases with in-

creasing values of (p. - p')/qP,' and that the error is

generally larger for the smallest cone angle. Note also,

that for a given cone angle, the cone-angle error decreases

with increasing free-stream Chapman-Jouguet Mach number.

The error in the cone-surface velocity is seen to be very

small.

The cone-angle error is within acceptable limits

for the 30- and 40-degree cones and the 10-degree cone at

C-J Mach numbers greater than 3.0, but is, perhaps, of

marginal acceptability for the 10-degree cone at C-J Mach

numbers of less than 3.0.

The larger cone angles are of greater interest

for detonation experiments since their stronger shocks are

more conducive to producing a detonation.

Approximate and exact calculations of the flow

field for Example VI in Table II are shown in Fig. 6.

THE DETONATION FLOW FIELD

The flow field under consideration is shown in

Fig. ic, with the subscript "0" denoting free-stream

conditions and the subscript "2" denoting conditions in

the field between the exothermic discontinuity and the cone.

As previously noted, it is assumed that M0 , cPo

c ,c C , and j iare known.

v0  P2  v2
27
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Consider first the determination of the tangential

velocity component downstream of the Chapman-Jouguet wave.

From the condition of constancy of the tangential velocity

component across the wave there is obtained the relation

uj - M (cos (Pj)(ao/c2 ) (17)

where (ao/c 2 ) may be shown to be given by
J

(ao ( r2 - l)(rRo)(TO) ( T)]2 (18)
c ~~~2 ) -Y-1- -

with (To /T2) obtained from Eq. (A16) as

oc

where, from Eq. (B3)

(Q 1 2 2 2o2

+2snsin 2 70
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and

(T/T)° - 1 + (21)

With uj and p known, (B and uB may be determined

by means of the unit field solution.

By manipulating Eq. (3), which is valid throughout

field 2, the surface Mach number is easily shown to be given

by

-2 2 Z2(_ *) (22)

The corresponding surface pressure is

;o 1 1 + (23)
PO Tp7PT\_ P 2

where (p/P) is given by Eq. (A19) with M0 replacing M, and

(D/Po) is obtained by specializing Eq. (A17) to the C-J
oJ

condition and replacing I and j by PO and p0 respectively.

From the aforementioned unit-field solution, values

of uD and vD corresponding to an arbitrarily assumed value of

(D are readily found. The corresponding values of Ko and

(Q/c pT ) are then determined as follows. From the condition

of constancy of the tangential velocity component across the

29
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detonation wave, and from relations for a non-Chapman-Jouguet

detonation analogous to those of Eqs. (18), (19) and (20), it

may be shown that

r' M2 sin 2  D 2 csc 2 V -" cot 2 4

" "z)2 + 1 0 (24)+ Z cp 0 TO)

where, from Eq. (A5)

(Q/c TO) - f ro M2 sin 2  + f 2 - (25)

with

""L 2 -(2 + 1) 2 + (12 -22 (26)
1T - I 2 (~l) + \v;D 2

(r2/ - lv D v

anf m -Y2~~1 ()D (27)

and

D - cot ;/c 2  (28)
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Solving Eqs. (24) and (25) for M2, there is obtained

S / 2
2 f2io sin 2  9D 2 fj (29)
o 2 U (u/c 2 )

The corresponding heat release is found by substituting

Eq. (29) in Eq. (25). Obviously %D must be restricted to

(PJ2% > PS.

The surface Mach number as given by Eq. (22) is

unchanged. The surface pressure is

-Y2

_B 1 D+ I+2 1 (30)Vo ýTP' -7 D (1

Where (p/P) is given by Eq. (A19) with M0 replacing K, and

(P/P ) is given by Eq. (A17) applied to a detonation, with

P0 and p0 replacing 1 and p.

The error in the approximate detonation field

calculation is, of course, of the same order as the unit-

field approximation upon which it is based.

THE DETONATION-SHOCK FLOW FIELD

It is not the purpose here to treat this flow field

(Fig. ld) in any detail. The initial portion of the expanding

flow downstream of the Chapman-Jouguet wave may be obtained by
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selecting the plus sign in the expression for C3 in the outer

solution of the unit field.

THE SHOCK-DEFLAGRATION FLOW FIELD

The treatment of this field requires approximations

for the adiabatic portion of the field, region 1 in Fig. lb,

and the diabatic portion, region 2 in Fig. lb. There are a

wide variety of approximations available in the literature

(see, for example, Refs. 26 through 31) for adiabatic cone

flow. It is worth noting that for most of these the accuracy

of the approximation increases with increasing free-stream

Mach number (see Ref. 30). The unit-field solution presented

herein also may be used for calculation of the adiabatic

field.

If the shock-deflagration flow is confined to

situations in which the normal-component Mach number ahead

of the flame is of the order of that occurring in turbulent

and laminar flames (say K 0.10) the diabatic portion of the

field in Fig. lb may be approximated by the Legendre-type

solution used in the inner portion of the unit field.

For known velocity components just downstream of

the deflagration, a Legendre-type solution for the region 2

in Fig. lb yields

u - A cos q + (B/2) cos p log 1+cos • (31)
- Cos
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"* (1 ~~~~+ coo l' o .(2
v =lsin q + (1/2) sin v log -cos +cot (32)

where

S- sin 9F (v; cos P- u sin (33)

uF - B (1/2) cos qF log I COS CF
Co -P (34)

The cone angle corresponding to a specified deflagra-

tion (hence, known values of I and 9) may be found by means

of Eq. (16) with 1 and i replacing A and B.

The surface Mach number is given by Eq. (22).

The corresponding surface pressure is

-'Y2

;B + r2 -l.2) 72 - 1 (5F (5
where (p/Po) is obtained from oblique shock relations (see

e.g. Ref. 32), (p/Po) is given by Eq. (A19) with M0° replacing

M, and (•P) is given by Eq. (A17) applied to a deflagration.

SOMER PARAMETRIC CURVES

A limited number of parametric curves of the

properties of some supersonic flows with oblique discontinuities
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are presented herein in Figs. 7 through 12. These curves are

not intended to be comprehensive; such a goal is beyond the

scope of this work. Nor are they intended to be the direct

result of applying the foregoing approximations, since, where

possible, existing tabulated fields are used in part. The

purpose is simply one of illustrating some trends and magnitudes

for parametric values within an approximate range of possible

interest.

Figures 7 and 8 present curves which are plots of

Eqs. (A5), (A8), (A12) and (A14), or combinations thereof.

These curves, along with the remaining equations of the

collection (A9) through (A19), permit the determination of

the flow properties across oblique deflagrations for

normal-component Mach numbers ranging in value from 0.0

to 0.10, at a constant specific heat ratio of 1.4

Some flow properties for the shock-deflagration

regime illustrated in Fig. lb are given in Figs. 9 and 10

for cone flows and in Figs. 11 and 12 for wedge flows for

a constant specific heat ratio of 1.4, free-stream Mach

numbers of 2.0, 4.0, and 6.0, flame normal-component Mach

numbers of 0.040 and 0.80, and identical adiabatic shock

angles for the cone and wedge cases.

Curves of the body semi-apex angle as a function

of the normal-component velocity ratio across the flame, for

constant values of specific heat ratio, free-stream Mach
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number, shock angle, and flame normal-component Mach number

are shown in Figs. 9 and 11 respectively for cones and

wedges. The flame inclination angles are also indicated

on the figures. Shown in Figs. 10 and 11 are the associated

cone- and wedge-surface Mach numbers from which the surface

pressure may be calculated by means of Eq. (35). The cor-

responding heat release parameter is ascertainable from

Fig. 7.

The adiabatic portion of the cone shock-deflagration

flow field required in the construction of the curves in Figs.

9 through 12 was obtained from the tables of Ref. 33. The

flame inclination corresponding to a preassigned stream Mach

number, shock-wave angle, and flame normal-component Mach

number was found by interpolation in the table of Ref. 33.

The cone angle corresponding to a given normal-component

velocity ratio across the flame (Fig. 9) was then determined

by means of a Legendre-type solution.

The construction of the wedge-flow curves in

Figs. 11 and 12 involved a rather straight forward applica-

tion of the oblique shock relations (Ref. 32) and the

appropriate equations in Appendix A.

An important point worth noting with regard to

Figs. 10 and 12 is the fairly large portion of the parametric

spectrum for which the body-surface Mach number is subsonic.
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This indicates that the conical flow downstream of the de-

flagration is partially subsonic for a fairly wide range of

free-stream Mach numbers and cone angles. As previously

noted, such a flow cannot be attained in the laboratory

since on a finite-length model the conical flow is destroyed

by the upstream propagation of downstream disturbances in

the subsonic field. In experiments aimed at attaining a

shock-deflagration type of flow, it is therefore necessary

to constrain the parameters to values for which the flow is

completely supersonic downstream of the deflagration. In

this regard it is observed from Figs. 10 and 12 that the

parametric spectrum for which the flow downstream of the

deflagration is completely supersonic increases in range

with increasing free-stream Mach number.

For cone flow, curves of the Chapman-Jouguet wave

angle as a function of free-stream Mach number for various

cone angles and a constant specific-heat ratio of 1.405

are shown in Fig. 13 along with the corresponding adiabatic

shock-wave angles. The detonation curves were obtained by

extending the flow fields given in Ref. 25 forward to the

known singular discontinuity surface of Ref. 25 by means

of the series expansion method described in the section

"Comparison of Approximate and Exact Unit Conical Flow

Fields." The previously described similarities in the

characteristics of the detonation and adiabatic shock waves
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are readily apparent in the figure. The condition for

which sonic velocity occurs at the cone surface is indi-

cated by the circular and triangular symbols respectively

for detonation and adiabatic shock waves. The corresponding

cone angles are cB and B "** As noted on the figure, the
0

surface Mach number is subsonic for detonation wave angles

greater than the wave angle for a sonic surface velocity,

and supersonic for lesser wave angles.

Since a sonic surface velocity is the limiting

condition for the attainment of conical flow on a finite

length model in an experimental facility, an "a priori"

knowledge of pB is important to the selection of a test

model for which the semi-apex angle should be as large

as possible to promote detonation without destroying the

conical flow. The adiabatic cone angle pB is not satis-
0

factory for this purpose since it is generally larger than

*B Note on Fig. 13, for example, that -B 30 degrees

for a free-stream Mach number of 2.2, whereas the correspond-

ing adiabatic-flow cone angle pB at the same Mach number
0

is found to be 39.1 degrees (Ref. 32).

It is well known for adiabatic cone flow that

there exists an absolute maximum cone angle above which a

conical flow region cannot exist regardless of the free-stream
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Mach number. For a specific heat ratio of 1.405 the value

of this maximum angle is known to be 57.6 degrees (Ref.

25). The analogous absolute maximum cone angle for a

C-J detonation flow was found herein to be 35.8 (± 0.2)

degrees.

CONCLUDING REMARKS

Approximate relations have been developed for

calculating cone flow fields of the shock-deflagration and

detonation types with attached adiabatic and diabatic dis-

continuities.

The appropriateness of the Lengendre-type approxima-

tion used for the shock-deflagration flow has been demonstrated

various places in the literature in applications to adiabatic

cone flow. The appropriateness of the present approximate

method for detonative flow fields has been verified herein

where it is shown that the error decreases with increasing

cone angle and increasing free-stream Chapman-Jouguet Mach

number.

It is believed that the analytical relations of

this paper will be useful in the design and interpretation

of cone-flow supersonic combustion experiments since there

are no flow field tables available for the specific-heat

ratios and conditions likely to be encountered in experiment,
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and hand numerical integration of the governing differential

equation involves a greater effort than does the present

method. The availability to the researcher of a digital

computer, of course, circumvents the use of the present

method. Such facilities are not always available, however,

and in any event the present method serves as a useful

complement to machine calculation as well as providing use-

ful relations for the machine program in the vicinity of

the singular discontinuity.
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APPENDIX A

Single Oblique Exothermic Discontinuity

Consider the deflagration shown in Fig. 2 to be

any general exothermic discontipuity (detonation or de-

flagration) separating two conical flow fields. In view

of the assumption of a perfect gas in the separate regions,

the following thermodynamic relations and definitions apply

2in a given region: p - pRT, R - cp - Cv, a - yRT - rP/p,

and c- p/C v.

With reference to Fig. 2, the equations of con-

servation of mass, normal momentum, tangential momentum, and

energy across the discont-inuity (denoted by the subscript d)

are respectively,

"Pd Vd " •d Vd (Al)

- -2 -2 (2

Pd + Pd Vd Pd + Pd Vd (A2)

ud u d (A3)

1i 2 '1 M2MSvd + c P d I d 2 Vd + CP2 Td (A4)
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The foregoing derived forms of the momentum and energy

equations are obtained from the basic forms through the use

of the conservation of mass relation in the basic momentum

equations and the conservation of mass and tangential momentum

in the basic energy equation.

The equation of state, the relations md - Vd/ad

and cp- •, R/(r- 1) and Eqs. (Al), (A2) and (A4) may be

combined to give P

cp~ \/-• 2 (2 + 1)r2 -+ ~•M -2 2~ Yr+); 2 ((-Y2- )

CP'Id (d ;v)d I
Y2 l- 1)()2_T (A5)

Equation (A5) may be solved for (;/V)d' The result

is

+ 1- " (A6a)d (+2  + 1) mi

where r 2, - ,r,<,, + - 2

rl m ) -j-T-l 1) 2d
F _- - d2 -2 L Q ]

-,.., (r-- -) <^,,d

2 1(A6b)
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and

mdm ld sin ('d - 'd) (A7)

Discussion of the consequences of the selection of

a specific sign preceding the radical in EP. (A6a) is relegated

to Appendix B.

Equation (A3) and the velocity vector diagram, Fig.

2, yield the following result for the change in flow direction

across the discontinuity

tan (cd -d d)/tan (d - d) (v/ 5 )d (A8)

Equations (A6) and (A8) are the governing relations for an

oblique diabatic discontinuity. For known values of rmd' qd'

9d' Q/cPlyd', 1 ' and r2 the foregoing equations may be solved

for (75) d and ed. In some problems, different combinations

of these parameters may be specified.

The density, static-pressure, static-temperature,

sonic speed, and normal Mach-number ratios across the dis-

continuity may be expressed in terms of (;/-)d" Relations

for the preceding quantities, derivable from Eqs. (Al) and

(A2) and the basi- thermodynamic relations and definitions are
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2- dd-- (A9O)

-•l " - r1 md (AlO)

(!/,T)d -(RI1/R 2) (T/V)d(;/-p)d (All)

I- 1

(a)d 2 /r 1 ) (v/')d (/p)] (A12)

(;r/m)d 1' vv)pp) (A13)
d~ jfl2)(/ d(-P]1

where (;/P)d in Eqs. (All), (A12), (A13), is given by Eq. (AlO).

The resultant-velocity ratio, the resultant Mach-

number ratio, the stagnation-temperature ratio, and the

stagnation-pressure ratio depend upon vector quantities.

Utilization of Fig. 2, Eqs. (A3) and (A4) and basic defini-

tions yield

(V/V)d = cos ( -d d)d/cos (CP - d (A14)

(;/-M)d = (V/V)d(W/a')d (A15)

(½>l 1 +QwL. () (A16)

CP2 Pl d4
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(P/P)d" (P/'P)d (-/15)d/(/ d (A17)

where

(T/T) - + 2-(A18)

(p/P) + (A19)

yield the required quantities in Eqs. (A16) and (A17) by

appropriate substitution of -Rd and Md for M.

A wide variety of alternate forms of the preceding

relations may be obtained by suitable manipulations.

For specified values of Y, ;r2 ' and Q/c pd,

the flow quantity ratios given by Eqs. (A6) and Eqs. (A9)

through (A13) are functions of the normal component of the

upstream Mach number in a manner analogous to the same well-

known property for an oblique shock wave (adiabatic dis-

continuity). The stagnation pressure ratio, however, does

not follow this analogous behavior in the diabatic case.

Equations (A6), (AlO), and (A13) are analyzed in

Appendix B for the purposes of delineating the boundaries of

the various normal-component flow regimes and classifying

them according to Jouguet's rule.
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APPENDIX B

Delineation of the Normal-Component Flow Regimes for

an Oblique Exothermic Discontinuity

For the discussion in this appendix it is convenient

to rewrite Eq. (A6), introducing a special notation, as follows

Y2 z2
+r2 "1d ±

-2 
(Bla)

;(:d) (,Y2 + 1) m d

where

F (L _- -2 - Yd (L2 - 1) -

- 2 /Bb

and the sign of the quantity (t) in the subscript of (;/-V)d

is taken to agree with the sign selected ahead of the radical.

Quantities which are functions of (;/v)d also carry the same

subscript notation.

From Eq. (Bl) it is seen that (;/-)d is double

valued for given positive values of F and id' that there are

two possible real values of imd corresponding to given positive

values of F and Q/c Td' and there are no real solutions for
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F< 0. It is apparent therefore that the factors crucial

to the delineation of the various normal-component flow

regimes by means of Eq. (Bl) are the magnitude of the

function F and the choice of sign preceding the radical.

For F - 0, Eq. (Bla) becomes

I•• (r2/r,) ( + •l•/ --2(v y2/1(1 + - d (B2)

\v (/2 + 1) md

Substitution of Eq. (B2) in Eqs. (AlO) and (A13) results in

md " 1.0; the Chapman-Jouguet condition.

From the expression for the derivative of (;/-)d

with respect to Id it is easy to show that the C-J condition

(F - 0) is a singular point of Eq. (Bl) for a constant Q.

It is also easy to show, by means of Eq. (A5), that the C-J

condition corresponds to the maximum heat release for a given

value of (;/-)d'

The heat release corresponding to the Chapman-Jouguet

condition is given by

cQ 1 rl 1 - - 2 C + (L- 1(B3)

where

r 2  (r2 - r)(r 2 + 1)
SY 1 1 (7'"16
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Or, alternatively, the normal Mach-number component yielding

the Chapman-Jouguet condition for a given heat release is

1

E 2 2 2 Q ° ( 2 r )( s
-:_+ (C + CQ) _+ c + CQ) - (r 2/r)1 (B5)

where

/ 2

Q ý (B6)

and the sign of the quantity [+]in the subscript of is

taken to agree with the sign used ahead of the radical.

Quantities which are functions of iii also carry the same

subscript notation. Note that the parenthetical subscript

notation (t) pertains to Eq. (Bl) and quantities derived

therefrom, whereas the bracketed subscript notation [±] per-

tains to Eq. (B5) and correspondingly derived quantities.

The effect of sign selection in Eq. (Bl) upon the normal

component of the downstream Mach number is now examined.

Since (;/P)d is a positive quantity* , and (;/)d(+) >

(;/-)d(-)' it follows from Eq. (A1O) that (;/')d(+) •-

(/Pd(-) Eq. (A13) then yields ;d + • md(-)" Since the

C-J condition is the boundary between the plus and minus

solutions of Eq. (Bla) there is obtained

; d(-) < 1.0 < ; d(+) (B7)

Th4is positive for (/) ( 1
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That is, selection of the minus (-) sign in Eq. (Bla) gives

a subsonic normal component for the downstream Mach number,

whereas selection of the plus (+) sign gives a supersonic

normal component for the downstream Mach number.

Two pairs of curves given by Eq. (Bl) for constant

values of Q, say QI and Q11 , (QII > Q,) are illustrated in

Fig. 3 for -1 > -2. The locus of the C-J points given by

Eq. (B2) is shown by the curve ABC. It is obvious (as noted

on the figure) that regions above the C-J curve correspond

to the selection of the plus (+) sign in Eq. (Bla) and the

regions below the curve correspond to the selection of the

minus (-) sign.

As previously noted there are no real solutions

to Eq. (Bla) for F < 0. Applying the condition F ( 0 to

Eq. (Blb), the normal-component Mach number range for which

there are no solutions to Eq. (Bla) for specified values

of 71, r2 , and Q/c d is found to be

-2 -2 -- 2

mj1-1]< _md < m i+ (B8)

where m JL[] and ij[+] are given by Eq. (B3). The j + con-

ditions for Q -QI and QII occur at the points J' and J1

respectively in Fig. 3. The corresponding iJf- conditions

occur at the points J and j in the figure.
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From Eqs. (B7) and (BS) it is apparent that there

exists a heat-release quantity Q(O) at and below which real

solutions to Eq. (Bi) are obtained for all real values of

md. This occurs when mij[- - mjE÷I, for which the term under

the radical in Eq. (B5) becomes zero. The corresponding values

(Q/Cp ld)(0), (0), and (/-(0) are easily shown to be

(Q/CPiT d)( 0 ) . (r" - r 2 )/rl (r 2 - 1) (B9)

(0) 1
m - (Y2/rl) (BIO)

(-/•)j(0) . 1.0 (Bll)

The velocity ratio curves are given by

0)
-- - 1.0

md mJ(0) (B12)

2
(.)(0) 2 

2/r + (r2 - 1)d

- (2 + 1)111d
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2

( -
2 r2/r, + (r 2 - 2) 1

lMid
(;)d(+) (r2 + 1) md (0)

-1.0i d mJ (B13)

Curves for Q - Q(O) are shown in Fig. 3. Point B

in the figure corresponds to -(O)

If the parameters Y2 /y 1 , Cr, and CQ are of order

unity, the following asymptotic forms for Eq. (Bl) are readily

obtained.

"r 2/I 1 \ 2 (C + Ct)
,, J - (d2 + 1 - (B14)

y- rdý2 o -)2
-2 ---> ) 7 (C C

v d ___ (r 2 /r

Did_ - 1.0 (B16)

md
S12

- (B17)
)d(-) r2+ 1
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Finally, the limiting boundaries for the regimes of

exothermic discontinuities are delineated by the adiabatic

condition Q - 0. For the adiabatic condition, note from

Eq. (Bi) that F is always positive and greater than zero,

providing -1 > r 2 . Therefore, for Q - 0 and -1 > Y2 # real

solutions to Eq. (Bl) are obtained for all real values of "d.

In Fig. 3 the endothermic regions are indicated by

the hatched areas. The shaded areas delineate regions of weak

deflagrations and detonations, while the unshaded areas

represent strong deflagrations and detonations. The bounding

adiabatic curves, Q - 0, are noted.

Although the material presented in this appendix

is not new in its entirety, it does cover the subject in a

slightly more generalized manner than heretofore.
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APPENDIX C

The Omega Functions

1
3-1 (1 + r"

-2 - -(5)(1 + 2r)/F1

n3 - -(1 - 4r)/F1

04 - (17 - ior + 8r 2 )/F 2

05 - (41 + 32r - 16r2)/F2

06 - (-58 - 22r + 8r2)/F2

07 - (-320 -2,28or -24or2 + 32or3)/F3

08 - (-5,040 -10,4401 -5,400r 2)/F3

09 - (150 + 3,780r -8,640or2 -960r3)/F3

010 - (1,920 -3,240r + 18,000'2 + 960'3 )/F3

oll . (-1,750 + 1,740r -9,120r2 - 320r3)/F3

where

r- (y - 1)/2 F 1  12 (1 + r)

F2  270 (1 + r)2 F3 - 72,900 (1 + r)3
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APPENDIX D

Conical Flow Field in the Vicinity of an Arbitrary

Non-Singular Conical Ray

Denote the angular position of an arbitrary non-

singular conical ray by 9a' then

U* * *
u Ua* va *(O - (Pa) + A2 ((p - a) )2 + A3 ((P - Ca) 3 + -- (DI)

U ua aV a (q 5 + 2 ( ) a 3 (Dl

where (p - pa) is a small quantity. Substitution of (Dl) in

Eqs. (1) through (3) yields

* *,2 * * 2 * ,

2 u* aa -k'v* a* -u* v*

A- a a a a a a
A2 2W 2 *22(va - aa )

2k a2a *F(lr)A 2 +4 (l+ 3 r)uaA2 (va - aa
A- 2a2 a*2a ý

6 (va -a )

2_ * 2*v [r* 2k*r (u+2 k a

a a a aa2

6 (va _aa)

where

k' -cot Ta"

The corresponding v component is found by means

of Eq. (2).
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TABLE I

Numerical Values of the Omega Functions

for Several Specific-Heat Ratiosa

rl 4 0

,-1.2 y- 1.3 -- 1.4 y- 1.405

01 1.5732 1.6086 1.6432 1.6449

02 -0.45455 -0.47101 -0.48611 -0.48683

03 -0.045455 -0.028986 -0.013889 -0.013167

04 0.049219 0.043912 0.039403 0.039196

05 0.13480 0.12726 0.12027 0.11993

06 -0.18402 -0.17117 -0.15967 -0.15913

07 -0.0056692 -0.0060097 -0.0062160 -0.0062234

08 -0.063259 -0.060677 -0.058299 -0.058185

09 0.0045413 0.0046842 0.0043877 0.0043640

10 0.018314 0.016616 0.015874 0.015857

011 -0.017186 -0.015290 -0.014046 -0.013997

asee Appendix C for omega function relations.

58



APPLIED PHYSICb tAMMATOEY

N mI

vl tovm f
C; C; III C; ;

r4 O OD-
0; on .; C 0

4A1

,-0 Vmo F-4 9U W iU
PO 0 0 00 0I00

4a

0 * C$ b 0 0 00 0--0

0 00 0

o~t P- ton0 00 0

00

to Im * 4

in~~~ to ~~o ~ a

8 eq OC4O 0;t 0
tn o w om o q .

84

m c-u O~0PEO ~ -~4l?-I
*i0

0 C~ C4~'O C659.



APPolD P$4YSOc LAIWATORY
UtwU woo MAMAW

SINGULAR
/ DISCONTINUITY ADIABATIC

SURFACE, Ps SOCKp

COMBUSTIBLE / ADIABATIC DEFLAGRATION, (P
GA / SMOCK, AP 2

M, > 1 .0 CO E CONE OR

WEDGEWEG

(.) ADIABATIC FLOW (b) SHOCK.DEFLAGRATION
(NO REACTION)

SSTRONG OR OCAPMAN.
CHAPMAN- . JOUGUET
,JOUGUET DETONATION, 0j

' DETONATION,
COMBUSTIBLE WD OR Oj CADIABATIC SHOCK, os

GAS PZPJ2 O)a p

., CONE OR CNE ONL Y
WEDGE CN H

(c) DETONATION (d) DETONATION-SHOCK

Fig. 1 CONICAL FLOW REGIMES FOR INSTANTANEOUS CHEMICAL REACTION

Y4

IfI

v

COME

F 2 L T I WEDGE

Fig. 2 ILLUSTRATION OF NOTATIOKq



AMIDO PWYII0 L4&MBTCIV

>Yl> Y'2

DEFLAG. DETON. - LINES OF CONSTANT 0

I --- CHAPMAN-JOUGIJET LINE
A

(7, WEAK DEFLAGRATION
/d AND DETONATION

STRONG DEFLAGRATION
L.JAND DETONATION

7 r -)< (ENDOTHERMIC)

0

SHOC WAV (FRE 10

Fig. 3 SCHEMATIC ILLUSTRATION OF NORMAL-FLODW REGIMES FOR OBLIQUE
EXOTM RMIC DISCONTINUITIES



Im xold "wa Wowl"l

AIPMUO PNYS LMOBATO

0.36 _

0.32

0.211
O0S ( EXACT)--

0.24 /

u*

0.20,

0.16 ____ ____

0 68.556 (DEG) u* = 0.30969
0.12 ------ EXACT SOLUTION

o A APPROX. SOLUTION, OUTER

o 0 APPROX. SOLUTION, INNER
0.08

0.04 /

0
44 48 52 56 60 64 68 72

€ (DEG)

Fig. 5 COMPARISON OF EXACT AND APPROXIMATE CONE FLOW FIELDS



APPLIW0 PMYSKCS LAOKATOtY

0.52

0.4

0.44

0.40

0.36

0.32

0.28

0.24

0.20

0.16

0 46.567 (DEG) u,* =0.36690

EXACT SOLUTION
0.08 o G APPROX. SOLUTION, OUTER-

0 0 APPROX. SOLUTION, INNER

0.04o

0 10 20 30 40 50 60 70
(P (DEG)

Fig. 6 COMPARISON OF EXACT AND APPROXIMATE CONE FLOW FIELDS



no. - ammlm du mwrn
AMUOD PHWhj LIMOSIMB

"uv woo MAMwO

YI- 'r 1.4

1..0

0.0.

Fig.~~~~~~~~~0 7 0POETEWFOBIU ELGAIN

Fig. 7 SOHM PROPERTIES OF OBLIQUE DMFAGRATIONS



APPUID FYSI= LABORAIO

D1 D 085 509 DO)O ..-

40.0 W(DEG) SYMBOL

464 0
30 - X_____ A41

20.

20M

Fi.9S10 RPRISO HC-DFARTIN WSFRCIR



"d1 "4W Nomoa W4mUrll
AMPMIIO PHYSICS LASOBATOtY

MIV iVU mM

4.0

3.6, ) .l - .- . 1.4

-- P .
0
.
04

0

3.2

SYMBOL N,..2.0 ,,4.0 N.6.o
2.8 0 - 63.21 59.85

0 64.87 48.62 46.49
A 4.08 39.91 34.87
a 37.80 2#49 24.07

4.0 2.4 v 31.21 17.72 14.35

3.6 2.0

3.2 . .I

2.0 1.

4.o 2.40

3.6 2.0 0. -

3.21. 0 4 8 1 16 20 2'4 21 32

2.8 1

2.4

1.6 0. 1 0. .

0 4 8 12 16 20 24 28 32

01

0 4 8 12 16 20 24 28 32

(FMi)p

Fig. * U C.,Uh')-SURFAC]E MAC'H[ N'UIER FOR SHOCK-DEFLAGRATION FWOV/



v•;1.4. ) o ns .0".6 ~
APPLIED PHYSICS LASOBATORY

H, . 6.0, yo" yl " Y2 . 1.4

40 •IS- - 0.040

"4"... , I- P - .
0
.'

OF -42.8 (DOG) es(DIG) SY14B0L• 959$ 0

3 - "J6- -2----.""

so 3-- 460- -

- Ep.O0.04

42.S• , p.40.66 (DEG) 0 D2 O7 S

os(DEG 2.14

17.44p[

100

-33 48
488A

€•ll (D2G) 
17.7G)

"so

11. 4800, M - Y2- 1-4

40 
-- 0F-0.040

42ý.83\~~• O .6DCO(DIEG) SYMBOL.

\ O

)31.21

-\N3.96

I06: 0O•"

10286 20 24 2-230

Fig. 11 SOME PROPERTIES OF SHOCK-DEFLAGRATION FLOWS FOR WEDGES



Tw )Ow Ncwx" im"Vlow"

APPUII PHYSICS LABORATOY~vu .i•NG ~MA4W
4.0

3.6

*yo --- - y2 - 1.4

3.2 - AF - 0.040

2.8 s(DEG)-

SYMBOL Mo - 2.0 Mo - 4.0 M . 6.0

0 - 63.21 59.85

4.0 2.4 - 64.87 48.62 46.49
A 48.08 39.91 34.87
a 37.80 26.49 24.07

3. v 31.21 17.72 14.35
3.6 2.0 • '

3.2 1.6

2.8 1.2

4.0 2.4.8

3.6 0.4 -i I

3.2 1. , .

0 8 12 16 20 24 28 32

0.4 _0- _

2.0 .. 4

Mo 4.0

1.6 J
0 4 8 12 16 20 24 28 32

0.8Fi .

0.4

•.2.0

0 4 8 12 16 20 24 28 32

Fig. 12 WEDGE-SURFACE MACH NUMBER FOR 8HOCK-DEFLAGRATION FLOWS



11" jowfd mCemd W4VUtwvAPPLIED PHYSICS LASOATOY

90 1 -YO =- YY2 1.405

0 __ __ CHAPMAN.JOUGUET DETONATION, (p

IADIABATIC SHOCK o
70__ CONE SEMI-APEX ANGLE , (PB

0I A SONICYVELOCITY AT COME SURFACESMB < 1.0
60 MBl~ >•• >1.0-

P•j (DEG) 
i

50 - p BS -- 300°

\\'

(Ps (DEG) -I7

40 (B 300

==.==".o_ (B = 200

10 203

1 2 3 4 5 6 7 8 9 10

Fig. 13 WAVE ANGLES OF CHAPMAN-JOUGUET DETONATIONS AND ADIABATIC
SHOCKS FOR CONE FLOW



noe Johne "*Meke UukW61ty
APPLIEI PN•HIW LANOAOIIV

Initial distribution of this document has been

made in accordance with a list on file in the Technical

Reports Group of the Applied Physics Laboratory, The

Johns Hopkins University.


